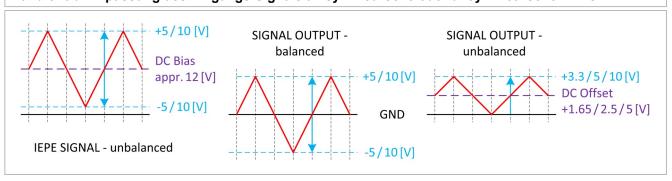


IPE-ISO1 - Version A: DIN Hutschienengehäuse

IPE-ISO1 – Version B: Aluminium Profilgehäuse

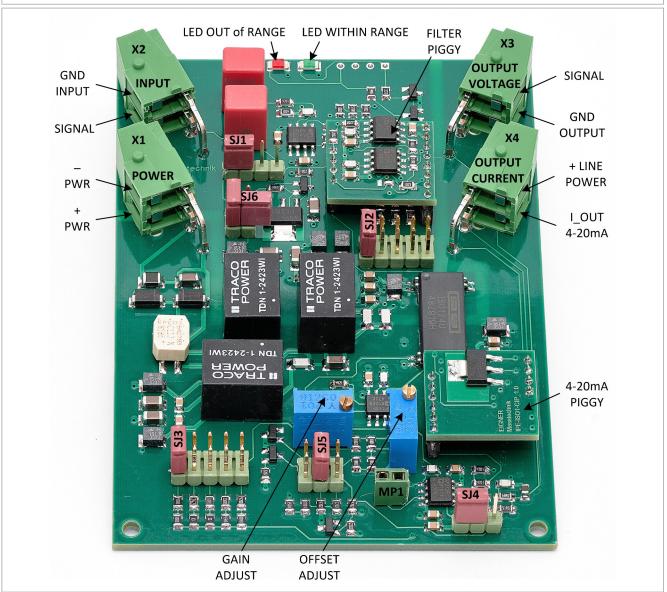
FEATURES

- Konfigurierbarer Präzisionsverstärker für IEPE / AC / DC mit 3-facher galvanischen Trennung
 - Signal-Eingang zu Signal-Ausgang
 - · Signal-Eingang zu Stromversorgung
 - · Signal-Ausgang zu Stromversorgung
- · Anwendungsspezifisch konfigurierbare Signal-Eingangs- zu Signal-Ausgangsbereiche
- Unsymmetrische IEPE-Signale gewandelt zu symmetrischen oder nach Anforderung unsymmetrischen Signal-Ausgängen mit Offset-Shift
- Zusätzlicher Strom-Ausgang 4 20 mA (2-pol. Stecker auf der Rückseite)
- Aufsteckbares Aktives Filter für Bandbreitenbegrenzung (z.B. als Anti-Aliasing-Filter)
- IEPE-Eingangskontrolle: Anzeige von Fehlern im IEPE-Eingang und IEPE-Eingang OK
- Weitbereichs-Stromversorgung 9 bis 36 VDC, ca. 2 W (Bananen und DC-Stecker)



Funktionsschaltbild □→B SJ6 IEPE JUMPERS RED: STANDARD IEPE CONFIG. CURRENT SEL. ±5V IN to ±5V OUT, I_IEPE 4mA **OFFSET** ADJ. SJ1 INPUT ₽ B B ANTI **CARRIER** COUPL 10 СĒ ALIASING RIPPLE X2 INPUT **FILTER FILTER** 2 Q ISOLATION В SI2 SJ3 OUTPUT AMP **INPUT GAIN RANGE INPUT SUPERVISION** O 1 X3 OUTPUT SJ4 **OUT OF RANGE** OUTPUT B **O** 2 **INPUT** SHIFT □C WITHIN RANGE CURRENT 01 фт SJ5 SHIFT INTERFACE X4 OUTPUT REF O 2 4 - 20 mA +V IN ◀ +V IEPE ◀◀ +V OUT ◀ GND IN GND OUT GND IN -V OUT -V IN ◀ -O 1 X1 PWR -V PWR O 2

Funktionsschaltbild mit den Funktionsgruppen


- DC oder AC-Kopplung (Hochpass) des Eingangsverstärkers Einstellung SJ1
- Eingangsverstärkung Einstellung SJ2
- Aktives Tiefpass Filter (steckbares Modul Piggyback) als Anti-Aliasing Filter für den Isolationsverstärker (muss bei Nichtgebrauch durch einen Ersatzstecker überbrückt werden (liegt der Lieferung bei Bedarf bei)
- Isolationsverstärker zur galvanischen Trennung von Signal-Eingang zu Signalausgang
- Signalanpassung an gewünschte Ausgangsbereiche Einstellung SJ3
- Signal-Ausgangsverschiebung von symmetrisch nach unsymmetrisch Einstellung SJ4 und SJ5
- Konstantstromquelle (I IEPE) zur Versorgung des IEPE-Sensors Einstellung SJ6
- · Signal-Ausgang als Spannungs- und Stromsignal verfügbar
- IEPE-Fehler-Indikator für offenen oder kurzgeschlossenen Signal-Eingang (rote LED) und auch Signal-OK-Erkennung (grüne LED)

Das Ausgangssignal hängt von der Signal-Weiterverarbeitung bzw.dem verwendeten Analog-Digital-Wandler ab: Anpassung des Eingangs-Signals an symmetrische oder unsymmetrische ADCs

Platinenansicht

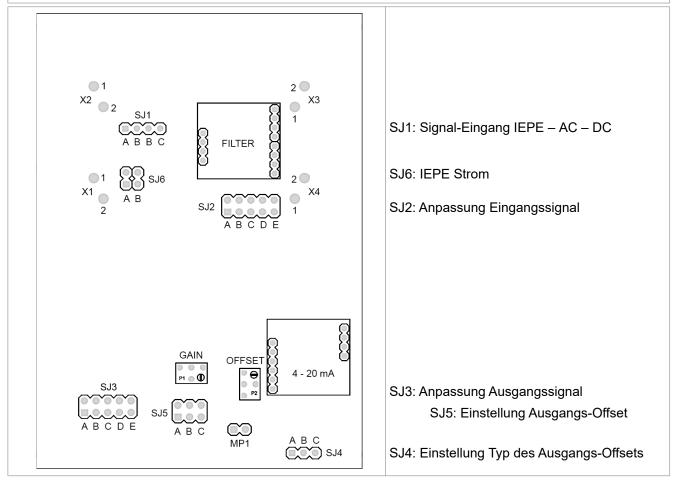
GAIN ADJUST:

Wird ab Werk eingestellt, soll normalerweise nicht vom Anwender verstellt werden.

OFFSET ADJUST:

Wird ab Werk für die Default-Konfiguration (wie bestellt) abgeglichen. Offset kann aber vom Anwender

Offset kann aber vom Anwender nachjustiert werden, wenn die Konfiguration geändert wurde.


MP1:

Messpunkt zur werkseitigen Verwendung.

Tabelle 1	Tabelle 1: Anschlussklemmen					
Klemme	Anschluss	Titel	Klemmenorientierung			
X1		Stromversorgung				
	1	+ Power (9 – 36 VDC)				
	2	– Power	X3			
X2		Signal-Eingang	OUTPUT OUTPUT INPUT INPUT			
	1	+ INPUT				
	2	GND INPUT				
X3		Signal-Ausgang (Spannung)				
	1	+ OUTPUT				
	2	GND OUTPUT	X4 X1			
X4		Signal-Ausgang (Strom)	+ LINE I_OUT + - POWER 4-20mA POWER POWER			
	1	+ LINE POWER 24 VDC nom. (12 – 36 VDC)				
	2	I_OUT 4-20mA (Offset 12mA) 500 Ohm nom. (100 – 1000 Ohm)				

Position und Kontaktbezeichnungen (A-B-C ...) der Steckjumper

Tabelle 2: Konfiguration von IEPE SIGNAL-EINGANG zu SIGNAL-AUSGANG					
Signal-Eingang	Signal-Ausgang	Verstärkung	Abschwächung	Ausgangs-Offset	Jumper
[V_peak-peak]	[V_peak-peak]	Faktor	Faktor	[VDC]	No. [SJ]
Symmetrisches Au	usgangssignal (symn	netrisch um GN	D)		
±10	±10	1	1	0	2/3/4
±10	±5	1	1/2	0	2/3/4
±5	±10	2	1	0	2/3/4
±2	±10	5	1	0	2/3/4
±2	±5	2.5	1	0	2/3/4
±1	±10	10	1	0	2/3/4
Unsymmetrisches	Ausgangssignal (vo	n GND zu)			
±10	+10	1	1/2	+5.0	2/3/4/5
±5	+10	1	1	+5.0	2/3/4/5
±10	+5	1	1 / 4	+2.5	2/3/4/5
±5	+5	1	1/2	+2.5	2/3/4/5
±10	+3.3	1	200 / 33	+1.65	2/3/4/5
±5	+3.3	1	100 / 33	+1.65	2/3/4/5
±2	+3.3	1	40 / 33	+1.65	2/3/4/5
±1	+3.3	20 / 33	1	+1.65	2/3/4/5

Tabelle 3: Steckjumper für Signalart am Signaleingang				
Nummer	Nummer Jumper auf Signal-Ankopplung Anwendungsbeispiel			
SJ1	A-B	AC mit I_IEPE	Standard IEPE	
	B-B (Parkposition)	AC ohne I_IEPE	Systemtest ohne I_IEPE	
	B-C	DC	Test Verstärkungs-Genauigkeit	

Tabelle 4: Steckjumper für Anpassung des Signal-Eingangs

Das Eingangssignal soll in der Eingangsstufe stets auf den Maximalpegel von $\pm 10V$ angehoben werden um das Signal/Rausch-Verhältnis (SNR) des Aktiven Filters und des Trennverstärkers zu maximieren. Alternativ dazu kann natürlich auch in einigen Fällen eine INPUT-OUTPUT Konfiguration von 1 / 1 eingestellt werden. Z.B. $\pm 5V$ / $\pm 5V$ oder $\pm 5V$ / $\pm 10V$

Nummer	Jumper auf	Verstärkungsfaktor	Für Signal-Eingang
SJ2	А	1	±10V
	В	2	±5V
	С	4	±2.5V
	D	5	±2V
	Е	10	±1V

Tabelle 5: Steckjumper für Anpassung des Signal-Ausgangs

Die Ausgangs-Anpassung erfolgt stets von einem internen Pegel von ±10V auf den gewünschten Ausgangspegel durch Signal-Abschwächung.

Nummer	Jumper auf	Abschwächungsfaktor	Für Signal-Ausgang
SJ3	А	1/1	±10V
	В	1/2	±5V / +10V
	С	1/4	+5V
	D	1 / 6.06	+3.3V
	E	1 / 10	±1V

Tabelle 6: Steckjumper für den Typ des Ausgangs-Offsets

Nummer	Jumper auf	Offset	Für Ausgangs-Typ
SJ4	A-B	0V	symmetrisch
	B-C	wie mit SJ5 gewählt	unsymmetrisch

Tabelle 7: Steckjumper für die Höhe des Ausgangs-Offsets

Nummer	Jumper auf	Offset	Für Signal-Ausgang
SJ5	А	+5V	0 – +10V
	В	+2.5V	0 – +5V
	С	+1.65V	0 – +3.3V

Bitte beachten:

Bei Nutzung des Moduls "Strom-Ausgang 4-20mA" muss die Konfiguration "Signal-Ausgang +10V" eingestellt werden: SJ3 = B, SJ4 = B-C, SJ5 = A.

Bei der Gehäuse-Version B ist die Stromschleife auf den 2-pol. Stecker auf der Gehäuse-Rückseite gelegt - Pin 1 = + LINE POWER 24 VDC nom. (12 – 36 VDC)

Pin $2 = I_OUT 4 - 20 \text{ mA}$ (Offset 12mA)

Tabelle 8: Steckjumper für IEPE-Strom

Nummer	Jumper auf	IEPE-Strom [mA]
SJ6	Offen (Parkposition - beide Jumper quer)	2
	A (2. Jumper in Parkposition)	4
	B (1. Jumper in Parkposition)	6
	A + B	8

Der gewählte Strom kann mittels mA-Meter im Kurzschlussbetrieb an der BNC-Buchse "INPUT" gemessen werden. Diese Stromquelle ist dauerkurzschlussfest.

Bei der Messung an der BNC-Buchse "INPUT" mittels Voltmeter sollte eine Spannung von ca. 28VDC zu gemessen sein.

Filter-Aufsteckmodul IPE-FM6.3

Anwendung A: Anti-Aliasing-Filter intern

Anwendung B: Anti-Aliasing-Filter extern

Anti-Alising-Filter zur Vermeidung von Aliasing-Produkten im getakteten Isolationsverstärker. Die Filterdaten werden für diesen Einsaztzfall festgelegt auf

Butterworth 8. Ordnung (= 48 dB/Oktave)

Grenzfreguenz 30kHz (-3dB)

Dies ist die Standard-Ausführung, wenn keine andere Konfiguration bestellt wird.

Damit wird sichergestellt, dass keine relevante Intermodulation mit der Signal-Bandreite (50kHz) und der Taktfrequenz (500kHz) des Isolationsverstärkers auftreten kann.

Anti-Aliasing-Filter für die dem Modul "IPE-ISO1" nachfolgenden Digitalisierer (ADC). Hierbei kann die Grenzfrequenz vom Anwender niedriger gewählt werden um die Nyquist/Shannon-Kriterien des nachfolgenden Digitalisierers zu erfüllen, wenn dieser mit niedrigeren Abtastraten betrieben

Mit dem Filter-Aufsteckmodul sind Filter

- Butterworth 8. oder 4. Ordnung (= 48 oder 24 dB/Oktave)
- Grenzfrequenzen ≥ 500Hz ≤ 30kHz realisierbar.

Filter-Ordnung und Grenzfrequenz

Charakteristik	Ordnung	Grenzfrequenz (-3dB]	Verwendung
Butterworth	8 Pole	30 kHz	Diese Werte beziehen sich nur auf die Verwendung
Butterworth	4 Pole	18 kHz	als interne A-A-Filter für den Isolationsverstärker. Für den Einsaztz als A-A-Filter für anschließende
			ADCs können folglich nur jeweils niedrigere Frequenzen gewählt werden.

Tabelle 9: INPUT / OUTPUT FEHLER versus FREQUENZ

Der Eingangs-Hochpass (HP) bei IEPE / AC Einstellung verursacht einen frequenzabhängigen Fehler, je nach gewähltem Eingangs-Kondensator (HP-C) und Eingangs-Widerstand (HP-R). Die Kapazität des Kondensators richtet sich nach der verfügbaren Bauform und die Größe des Widerstands hängt hauptsächlich von den Parametern Verstärker-Offset und rauschbedingte Offset-Schwankungen ab und kann folglich nicht beliebig groß gewählt werden. Das dargestellte Verhalten ist kein spezifischer Fehler von IPE-ISO1, sondern ein Charakteristikum jedes Hochpasses 1. Ordnung.

HP-C [uF]	HP-R [kOhm]	FREQUENCY [Hz]	Xc [Ohm]	ERROR [V_OUT / V_IN]	ERROR [%]	5 % 🖣
3.3 + 3.3	1000	0.5	48253	0.9540	4.83	
		1	24126	0.9764	2.41	
		5	4825	0.9952	0.48	2.5 % –
		10	2412	0.9976	0.24	
		50	482.5	0.9995	0.05	
		100	241.2	0.9998	0.02	0.5 % –
		500	48.25	1.0000	0.00	0.3 % =
		1000	24.13	1.0000	0.00	1 10 100 1

INPUT / OUTPUT VERSTÄRKUNGS-PRÄZISION

Generell sind die Abweichungen von den nominellen Verstärkungswerten < 1%. Die Offsets: 0V, +5V, +2.5V, +1.65V können auf ± 1mV eingestellt werden.

Die exakten Werte siehe bitte mitgeliefertes individuelles Messprotokoll "IPE-ISO1 – TEST REPORT"

Tabelle 10: Technisc	Tabelle 10: Technische Daten			
Stromversorgung:	9 – 36 VDC			
Stromaufnahme @ I_IEPE 4mA	ca. 80 mA @ 24 V ca. 150 mA @ 12 V			
IEPE-Strom:	Konstantstrom: 2 – 4 – 6 – 8 [mA] @ 28 VDC			
Bandbreite:	0,5Hz – 30kHz (-3dB)			
Signaleingang:	Siehe Tabelle 4			
Signalausgang:	Siehe Tabelle 5			
Ausgangs-Shift: Siehe Tabelle 6 und 7				
Fehler-Anzeige:	Grüne LED: Eingang im nominalen Bereich Rote LED: Eingang kurzgeschlossen oder Eingang offen ohne IEPE-Sensor			
	Bitte beachten: Diese Anzeige arbeitet nur korrekt im Modus "IEPE". Bei den anderen Signaltypen "AC" oder "DC" alternieren die beiden LED je nach Eingangsbereich und Signalfrequenz			
Gehäuse-Versionen:	A: DIN RAIL Gehäuse – Größe: 112 x 76 x 19 [mm], Schutzart IP30 B: Alu-Profilgehäuse – Größe: 85 x 39 x 140 [mm], Schutzart IP54			
Umwelt: Lagertemperatur -40 – +100°C, Betriebstemperatur -10 – +85°C				
Aktive Filter:	IPE-FM6.3_BU_4_F: Butterworth 4. Ordnung (= 24 dB/Oktave) IPE-FM6.3_BU_8_F: Butterworth 8. Ordnung (= 48 dB/Oktave) F = gewünschte Grenzfrequenz (bei Bestellung bitte mit angeben)			
Stromschleife:	IPE-ISO1-CIP: Stromtransmitter 4 – 20 mA, Offset 12 mA			